π° Welcome to MyBunny.TV β Your Gateway to Unlimited Entertainment! π°
Enjoy 10,000+ Premium HD Channels, thousands of movies & series, and experience lightning-fast instant activation.
Reliable, stable, and built for the ultimate streaming experience β no hassles, just entertainment! MyBunny.TV β Cheaper Than Cable β’ Up to 35% Off Yearly Plans β’ All NFL, ESPN, PPV Events Included π°
π Join the fastest growing IPTV community today and discover why everyone is switching to MyBunny.TV!
Faulkenberry T. Bayesian Statistics. The Basics 2025
To start this P2P download, you have to install a BitTorrent client like
qBittorrent
Category:Other Total size: 7.80 MB Added: 6 months ago (2025-03-10 23:39:09)
Share ratio:1 seeders, 0 leechers Info Hash:CD426537D1BA6313C6052015D06077F25D3E9175 Last updated: 6 hours ago (2025-09-14 18:49:28)
Report Bad Torrent
×
Description:
Textbook in PDF format
Bayesian Statistics: The Basics provides a comprehensive yet accessible introduction to Bayesian statistics, specifically tailored for any researcher with an interest in statistical methods. It covers the theoretical foundations of Bayesian inference, contrasting it with classical statistical methods like null hypothesis significance testing. The book emphasizes key concepts such as prior and posterior distributions, Bayesβ theorem, and the Bayes factor, making them understandable even for readers with minimal mathematical backgrounds. Methodologically, the book offers practical, step-by-step guides on how to conduct Bayesian analyses using the free software package JASP. Each chapter focuses on applying Bayesian methods to common research designs with real-world data. Readers will benefit from the clear examples, visualizations, and JASP screenshots that ensure the learning experience is interactive and easy to follow. Full of practical content, the book emphasizes the advantages of Bayesian model comparison over traditional approaches, especially in quantifying evidence for competing hypotheses. Readers will also learn how to perform sensitivity analyses to assess the impact of different prior assumptions on their results. By the end of the book, readers will get both the theoretical understanding and practical skills to implement Bayesian methods in their own research, making it an invaluable resource for both novice and experienced researchers studying Bayesian statistics